Characteristics of children with congenital talipes equinovarus in a new clubfoot program of the University of Uyo Teaching Hospital, Uyo, Akwa Ibom State, Nigeria

*Edwin Dim,¹ Aniebiet Ubaha,¹ Innocent Edagha,² Aniekan Peters,² Uchenna Dim,³ Chijindu Oforjigha-Dim⁴

ABSTRACT

Background: Organized congenital talipes equinovarus deformity service is relatively new in the study centre. Evidence suggests that 80% of infants with congenital clubfoot live in developing countries, and the condition is said to be the commonest congenital musculoskeletal deformity in Nigeria, accounting for 52.8% of all malformations with live births incidence of 3.4/1000. Aim: The reason for this study was to provide an initial data base for congenital clubfoot in the study environment. This work is expected to contribute scientific data, from the perspective of the study environment, to the already existing national database on the subject of congenital clubfoot. Methods: A 6-month observational study of demographic patterns of congenital talipes equinovarus at a Nigerian regional hospital in Akwa Ibom State is presented. Results: Sixty-seven children met the inclusion criteria. There was a slight preponderance of males over the females, at a ratio of 1.6: 1. The mean age of the population was 31.6 ± 23.6 months. The mean age of the mothers and fathers at the conception of the children with clubfoot deformities was 25.6 ± 6.2 years and 32.3 ± 6.7 years respectively. In 45 (67.2%) children, the clubfoot was bilateral and unilateral in 22 (32.8%). Idiopathic clubfoot was the commonest variant at the rate of 70.1%. Conclusion: Late presentation of clubfoot for treatment was common among the initial population of children with clubfoot seen in this study. Bilateral affectation was the commonest pattern of involvement. A low negative correlation of subjects' age at presentation was deduced in relation to parents' age at conception and fathers' income. The risk of clubfoot was higher among firstborn children and low overall family income was a risk factor. The implication of these findings is for the relevant authorities to support health education initiatives to the communities where the patients and their parents reside.

Keywords: Congenital talipes equinovarus, Characreristics, Children, Uyo.

INTRODUCTION

Congenital talipes equinovarus (CTEV, congenital clubfoot) is one of the most common structural congenital abnormality affecting the lower limb, with a generally accepted incidence of one to two per 1000 live births. 1,2 However, the incidence of CTEV has been reported to vary across the regions of the world from 0.6/1,000 individuals in Asia, 0.9/1,000 individuals in Australia to 6.9/1,000 individuals in Hawaii, Polynesia and Maori.3,4 Evidence suggests that 80% of infants with congenital clubfoot live in developing countries, 5,6,7 and the condition is said to be the commonest congenital musculoskeletal deformity in Nigeria, accounting for 52.8% of all malformations with live births incidence of 3.4/1000.8-12 The incidence in males is reportedly higher than in females, with a male to female ratio of 4:1.3 From a global perspective, it has been reported that approximately 100,000 children are born world-wide each year with clubfoot. As already stated, about 80% of these children are believed to live in developing countries

Department of Orthopaedics and Traumatology, Faculty of Clinical Sciences, University of Uyo, Nigeria.

Department of Human Anatomy,² Faculty of Basic Medical Sciences, University of Uyo, Nigeria,

Nursing Services Division,³ National Orthopaedic Hospital, Igbobi, Lagos, Nigeria.

Department of Medical Laboratory Services⁴ (Haematology and Blood Transfusion Services), Federal Medical Centre, Ebute - Metta, Lagos, Nigeria.

*Corresponding Author

Edwin M. Dim
Department of Orthopaedics and Traumatology
University of Uyo Teaching Hospital, Uyo
Faculty of Clinical Sciences
University of Uyo
Nigeria
E-mail:maduakonamdim@yahoo.com;
edwindim@uniuyo.edu.ng

where many of them are deemed unable to receive the expected optimal treatment.⁵⁻⁷, ¹³ When neglected, CTEV becomes a serious reason for physical, social, and psychological disability among the affected subjects.¹³ The anatomic deformity of CTEV is easily recognized, comprising equinus,

mid-foot cavus, fore-foot adduction and hind-foot varus. The deformity is both cosmetic and functional with associated hypoplasia of skin, muscles, bones, tendons, ligaments and neurovascular bundle on the medial side. The affected foot is smaller than the normal foot. ^{2,14} Functional adaptation occasioned by these deformities in an untreated clubfoot result in additional local anatomical changes such as callosity of the lateral border of the foot due to weight bearing on this part, increasing deformation of the tarsal bones of the foot, skin and bone infections, stiffness of the foot, limitation in mobility, and inability to wear standard shoes.²

Although clubfoot may be associated with many other congenital abnormalities, it is more commonly an isolated idiopathic birth defect, which may affect either one foot or both feet. When it is associated with other congenital anomalies, it is referred to as syndromic clubfoot. When it is an isolated defect, it is referred to as idiopathic clubfoot. 15 About half of infants with clubfoot have involvements, and unilateral deformity occurs more often on the right side. 3,15 There is an associated posteromedial ankle and foot soft tissue contractures which deform and displace tarsal bones, giving rise to characteristic deformities of equinus, heel varus, mid-foot adductus and cavus. 15,16 These deformities are responsible for the plantar-flexed, inverted, and adducted position of the foot. The deformation of the normal anatomy of the affected foot is conspicuously obvious at birth.

The aetiology of CTEV is unknown but several theories have been advocated to explain it.^{1, 2, 13} However, most infants who have congenital clubfoot have no identifiable genetic, syndromal, or extrinsic cause.¹⁷ The reason for this study was to provide an initial data base for congenital clubfoot in the study environment. This work is expected to contribute scientific data, from the perspective of the study environment, to the already existing national database on the subject of congenital clubfoot.

METHODS

Study Setting: This study was done at the clubfoot clinic of the Department of Orthopaedics and Traumatology, University of Uyo Teaching Hospital, Uyo Nigeria.

Study Design

This was a 6-month observational study of subjects with congenital clubfoot seen at the clubfoot clinic from June to November, 2021.

Sample Size Determination

The Cochrane formula ¹⁸ for minimum sample size calculation for a population more than 10,000 was used. The estimation of the minimum sample size was based on the formula $N = Z^2pq/d^2$, where Z = a constant, 1.96 (Standard normal deviation usually set at 1.96); p = proportion or prevalence rate of disease in decimal and refers to the number of cases which are present within the population at a particular point in time. The pooled estimate for clubfoot birth prevalence for Africa is 0.96, according to Smythe *et al.* ¹⁹ For the purpose of sample size calculation in this study, the prevalence rate of 0.96 was used; q = 1-p = 0.04; and d = degree of accuracy desired set at 0.05 (95% accuracy was desired).

Therefore,
$$N = \frac{1.96^2 (0.96 \times 0.0)}{0.05}$$

N = 59

From the above formula, a minimum sample size of 59 was calculated for this study. However, the actual sample population recruited into this study was 67.

Sampling Technique

sampling technique was employed among clubfoot subjects seen at the clubfoot clinic.

Data Collection

Data was collected using pre-tested researcher-based proforma. This proforma was completed at the point of enrolment of the subjects into the clubfoot clinic.

Ethical Issues

Ethical approval for the study, with ethical approval reference AD/S/96/VOL.XXI/574, was obtained from the Ethical Review Board of the hospital. Consent for inclusion in the study was sought and obtained from the parents or guardians of the children All information was explained to participants and their parents or guardians before evaluation.

Inclusion/Exclusion criteria

The following were the inclusion criteria for the study: Subjects with congenital clubfoot; subjects 18 years or less in age; must be enrolled at the Orthopaedic/clubfoot clinic; and guardian must be willing to give informed consent. The exclusion criteria were subjects above 18 years; presence of secondary clubfoot (e.g., post-traumatic clubfoot,

post poliomyelitis related clubfoot, or clubfoot associated with cerebral palsy); and subjects that were not enrolled in the clinic.

Research Protocol

Consecutive cases of researcher-diagnosed clubfoot subjects enrolled into the clubfoot clinic, and who met the inclusion criteria were selected. Pre-tested researcher-based proforma was used as data collecting tool. The demographic information of the subjects such as the age, gender, birth order, birth weight, parents' age at birth of subjects, and parents' income were obtained and documented.

Clinical assessment of the subjects' feet was done at first presentation, noting and documenting the specific patho-anatomic details of clubfoot (the affected foot, nature of clubfoot and clinical type) found in the subjects. The side involved was noted, and the clubfoot was categorized into intrinsic, extrinsic, idiopathic, syndromic or recurrent. The presence of hind foot varus, equinus, forefoot adduction, callosity, and other associated congenital anomalies were noted and documented.

Data Analysis

Data generated was subjected to statistical analysis using the statistical package for social science (IBM SPSS for windows version 20). Tables were expressed in numbers of observation (frequency) with prevalence in percentages, and showing mean and standard deviation. The association between continuous variable was done using Pearson product correlation. Statistically significant associations and mean differences were considered at p-value less than less than 0.05 (p < 0.05).

RESULTS

a. Demographic Characteristics of the Children with Clubfoot

A total of one hundred and twelve feet in 67 children with congenital talipes equinovarus (congenital clubfoot) deformities who met the inclusion criteria were recruited into the study. The demographic characteristics of the children is presented in Table 1.

Table 1: Demographic characteristics of the children with clubfoot

Variables	Groups	Frequency	Percentage
Gender	Female	26	38.8
	Male	41	61.2
	Total	67	100
Age group (month)	0-12	17	25.4
	13-24	19	28.4
	25-36	18	26.9
	<u>≥</u> 37	13	19.4
	Total	67	100
Position in the Family	1 st	31	46.3
	2^{nd}	11	16.4
	3^{rd}	20	29.9
	$\geq 4^{th}$	5	7.5
	Total	67	100

b. Descriptive Statistics of the Parents' Demographic Characteristics

Table 2 shows the descriptive statistics of the characteristics of parents of the subjects, with emphasis on parental age, income and maternal parity. The average monthly income in Nigerian Naira (NGN) assessed in 36 mothers and 53 fathers was

 18055.5 ± 20387.6 and 36377.4 ± 42629.1 Naira, respectively. This is approximately equivalent to forty-three United States dollars (USD 43) and Eighty eight (USD 88) according to a currency conversion chart.²⁰ respectively as at the time of this study, according to a currency conversion chart.²

Table 2: Descriptive statistics of the parents' demographic characteristics

Variables	Number	Mean ± SD
Mother's Age (Years)	67	25.6 ± 6.2
Father's Age (Years)	67	32.3 ± 6.7
Mother's income (NGN)	36	$18055.6 \pm 20387.6 \text{ (USD43)}$
Father's income (NGN)	53	36377.4 ± 42629.1 (USD88)
Mother's Parity	67	2.2 ± 1.2

c. The Association between Age (in months) at presentation of the Subjects and Demographic Characteristics of the Parents of the Subjects

The result of the association between age (in months) at presentation of clubfoot subjects

and the parents' demographic characteristics is presented (Table 3). The Pearson correlation coefficient (R) showed low negative correlations of subjects' age at presentation with parents' age at conception and fathers' income. This low negative correlation was not statistically significant.

Table 3: The association between age of subjects in months and demographic characteristics of the parents of the subjects

S/N Variables	Mean	SD	R
Age in Months	31.6	23.6	1
Mothers' age (Years)	25.6	6.2	-0.2
Fathers' age (Years)	32.3	6.7	-0.078
Mothers' income (NGN)	18055.6	20387.6	0.104
Fathers' income (NGN)	36377.4	42629.1	-0.049

d. Patho-anatomic Profile of Children with Clubfoot (Classification/subtypes of Clubfoot seen in the Sample Population)

The classification and subtypes of clubfoot based on the affected side, nature and clinical types among the study population is presented in Table 4.

Table 4: Classification/subtypes of clubfoot seen in the sample population

Groups	Frequency	Percentage
Bilateral	45	67.2
Unilateral		
Left	11	16.4
Right	11	16.4
Total	67	100
Extrinsic	28	41.8
Intrinsic	39	58.2
Total	67	100
Idiopathic	47	70.1
Neuropathic	1	1.5
Recurrent	7	7 10.4
Syndromic	12	17.9
Total	67	100
	Bilateral Unilateral Left Right Total Extrinsic Intrinsic Total Idiopathic Neuropathic Recurrent Syndromic	Bilateral 45 Unilateral 11 Left 11 Right 11 Total 67 Extrinsic 28 Intrinsic 39 Total 67 Idiopathic 47 Neuropathic 1 Recurrent 7 Syndromic 12

e. Patho-anatomic Profile (Distribution of Identifiable Deformities of Clubfoot Among the Sample Population) The identifiable deformities of clubfoot among the sample population are as presented (Table 5). 27 (40.3%) had callosity of the lateral border of the foot, while tibia torsion was absent in all (Table 5)

Table 5: Distribution of identifiable deformities of clubfoot among the sample Population

Variables	Groups	Frequency	Percentage
Forefoot adduction	Yes	67	100
	No	4	6
Hind-foot varus	Yes	63	94
Equinus deformity	No	3	4.5
	yes	64	95.5
Cavus	No	8	11.9
	yes	59	88.1
Callosity	No	40	59.7
	yes	27	40.3
Tibia torsion	No	67	100
Palpable head talus	No	2	3
	yes	65	97
Spindle legs	No	53	79.1
	Yes	14	20.9

f. Patho-anatomic Profile (Other Musculoskeletal Abnormalities Associated with Clubfoot in the Sample Population)

Eleven (16.4%) of the sample population had other congenital musculoskeletal anomalies apart from clubfoot (Table6).

Table 6: Other musculoskeletal abnormalities associated with clubfoot in the sample Population

Clubfoot		
Variables	Groups	Frequency (%)
Over-lapping toe digits	No	66 (98.1)
	Yes	1 (1.5)
	Total	67 (100)
Macrodactyly of the big toe	No	61 (91)
	Yes	6 (6)
	Total	67 (100)
Syndactyly (toes)	No	66 (98.5)
	Yes	1 (1.5)
	Total	67 (100)
Syndactyl (fingers)	No	65 (97)
	Yes	2 (3)
	Total	67 (100)
Polydactyly (fingers and toes)	No	67 (100)
Rudimentry toe(s)	No	67 (100)
Rudimentary finger(s)	No	66 (98.5)
	Yes	1 (1.5)
	Total	67 (100)

DISCUSSION

This is a prospective observational study aimed at investigating the demographic patterns of congenital talipes equinovarus (CTEV) deformity, more commonly known as congenital clubfoot deformity, as seen at a Nigerian regional hospital. Notably, CTEV is reportedly the commonest congenital musculoskeletal deformity in Nigeria, 8,9,11,12 and a leading cause of disability world over, with over 80% of cases believed to be domiciled in developing

countries, where clubfoot is adjudged a major disease burden in low-resource settings.^{5, 7, 13} In the course of this study, the overall burden of CTEV relative to other pediatric disorders in the study centre was estimated at 3.04%. If left untreated, CTEV can become a severe disability and deformity that remains with the child into adulthood.

Various reports^{7,11,12,15} show that clubfoot deformities are commoner in the males than in females with a ratio varying from 1: 1.6 to 2: 1. This

present study is also in agreement with the aforementioned with a slight data, preponderance over the females in a ratio of 1.6: 1. It is not clear why there is this sort of consistent discrepancy in the gender distribution pattern of clubfoot. According to Kruse et al.,21 it is due to inherent difference, occasioned by genetic factors, in the susceptibility to the deformity. In order to inherit clubfoot, it is propounded that females ought to have a greater number of susceptibility genes than males. Females are thought to be more likely to transmit the disease to their children and more likely to have siblings with clubfoot. This phenomenon is known as the Carter effect, and the presence of such an effect supports a multifactorial threshold model of inheritance.²¹ In a study performed at Washington University School of Medicine and Shriners Hospital for Children, St. Louis, Missouri, involving 97 multiplex families with more than one individual with idiopathic clubfoot, Kruse et al.,21 calculated the rates of transmission by the affected fathers and affected mothers, and the prevalence among siblings was determined in the nuclear families of affected persons. They found that the prevalence of clubfoot was lowest in daughters of affected fathers and highest in sons of affected mothers. The affected mothers transmitted clubfoot to 59% of their children, whereas affected fathers transmitted idiopathic clubfoot to 37% of their children, and this occurrence was found statistically significant²¹ at p = 0.04. They also found that siblings of an affected female had a significantly higher prevalence of clubfoot than those of an affected male. This phenomenon whereby the offspring of an affected female has a higher chance of suffering from clubfoot than that of an affected male is known as the Carter effect. This effect, which has also been demonstrated in congenital pyloric stenosis, is thought to be due to a polygenic inheritance, whereby females require a greater genetic load to be affected by the disease. 21, 22 In this present study, however, none of the parents of the children with clubfoot was found to have the disease. It may well be that our comparatively smaller sample size, coupled with the duration of this study did not allow such an observation to be registered.

The average age of the children encountered in this study was 31.6 ± 23.6 months. This is different from the findings by some authors in different locations in Nigeria. The sample populations studied by Mejabi *et al.*, and Ugorji *et al.*, were much younger than the sample population of this study. This is probably because clubfoot clinic service was

relatively young in the study centre, having begun about six months prior to this study. The initial clubfoot patients seen in the study centre comprised neglected and abandoned cases living with the deformity within the various communities across the State. These cases came to the study centre following community awareness and sensitization programmes by the clubfoot team of the hospital. To the best of our knowledge, this work is the first scientific documentation of clubfoot within the locality of this study, following an organized treatment programme for the disease in the State. Therefore, it is not surprising that the initial cases managed under the programme comprised a lot of older children, who hitherto lived with the disease in the communities. It is expected that, by the time the older children population with clubfoot is mopped up by the on-going treatment programme, a younger children population in their infancy and neonatal period will become more prevalent, as is the situation elsewhere, 11,12 where there are much older clubfoot treatment programmes than what obtains in the present study centre. The activities of unorthodox practitioners such as traditional bone setters (TBS) may have contributed in diverting the attention of some parents of the children in this study from seeking proper care of the clubfoot at early stages. Asuquo et al., 23 have reported cases as old as nine years at first presentation to the hospital.

The relationship between birth order and clubfoot in this study was statistically significant at p < 0.001. From point of view of both descriptive and inferential statistics of this data, it was observed that as the birth order increased, the rate of clubfoot decreased. This finding is corroborated by similar findings by some other authorities, 23 - 27 who have also documented that clubfoot is commoner among firstborn children. The association between birth order and occurrence of clubfoot is difficult to explain. Werler et al., 27 have postulated the impact of medication use in pregnancy in relation to the risk of isolated clubfoot in offspring. In their study, they found that the use of certain specific medications in early pregnancy can increase the risk of clubfoot. Such medications include opioids, antiviral drugs, diphenhydramine, non-steroidal anti-inflammatory drugs, antimicrobials, antiemetic drugs and fertility drugs. For instance, it is thought that non-steroidal anti-inflammatory drugs may be vasoactive in the developing foetus due to prostaglandin inhibition, and this may provide some evidence in support of vascular disruption pathogenesis.²⁷ Some of these drugs listed here are often available over the

counter, and are commonly taken as treatment for the constitutional symptoms of early pregnancy. These constitutional symptomatic upsets occur as part of early morning sickness of pregnancy, which is often accentuated in some primigravid women. Access to these drugs either through formal prescriptions or by self-medication practices can be adduced as additional factor to strengthen the opinion by Werler *et al.*,²⁷ Since the possibility of taking these drugs is higher with the primigravid women, the result may be an increase in the clubfoot risk of the firstborn children.

There is evidence in literature that involvement by clubfoot is bilateral in about 30 - 50% or more of cases, and patients with bilateral clubfoot are said to have a wider range of severity. In unilateral cases, the right side has been reported to be more commonly affected than the left. 11, 12, 15, 17, 28-30 This assertion finds corroboration in this study, where 45 (67.2%) of cases was bilateral. However, in the unilateral cases seen in this study, the right and left feet were equally affected (Table 4.4), and this is in disagreement with findings elsewhere, 12, 17,28 but in agreement with the findings by some other authors. 11, 31 Although the rate of bilateral clubfoot, as already noted, has been quoted as 30 - 50% of cases, some authors^{12, 32} have reported much higher rates to the tune of 75% for bilateral clubfoot. Although all the aforementioned authors 11, 12, 15, 17, 28, 30, 32 found higher rates of bilateral clubfoot in their studies, some authorities have, on the other hand, reported preponderance of unilateral clubfoot over the bilateral types. 9, 33,34 Clubfoot generally impairs the normal ambulatory skills and speed of affected persons, compared with persons having normally developed feet. Persons with unilateral and bilateral clubfoot walk differently, but unilateral clubfoot presents more imbalances in gait biomechanical parameters compared with bilateral clubfoot.³⁰

The majority of cases of clubfoot have been reported to occur in isolation and are referred to as idiopathic, meaning that the aetiology of such cases is not fully understood. In the idiopathic variant, clubfoot is the only congenital defect. This may further be subclassified into familial and non-familial.^{27, 35-37} In some reports, ^{12, 35, 37, 38} the rate of idiopathic clubfoot has been reported in the range of 80 - 92%. Idiopathic clubfoot constituted 47 (70.1%) of the cases seen in this study, and this is in agreement with already existing evidence. Syndromic clubfoot was the second commonest variant of congenital clubfoot seen in this study, accounting for 12

(17.9%) cases (Table 4). Although the exact etiological factors in idiopathic clubfoot are not known, several theories have been proposed, including uterine restriction in early pregnancy, disorders of endochondral ossification, connective tissue disorders and vascular disruption.35,39 The theory of uterine restriction by pressure was propounded by Hippocrates, and this theory assumes that clubfoot might be caused by an increased intrauterine pressure during pregnancy.^{7,40} However, this theory was disputed because of absence of association of clubfoot with most cases of overcrowded uterus such as cases of twins, large babies or polyhydramnios.^{7,41} Other factors that have been implicated include genetic factors, developmental arrest, male gender, maternal smoking, certain medications, maternal diabetes, maternal age, maternal parity and education level.

A multifactorial aetiologic model that involves both environmental and genetic factors has also been proposed, but the underlying pathogenesis for these factors remains a matter of scientific debate. 27, 42-50 Although 70.1% of cases in this study were idiopathic clubfoot, there was no record of such risk factors as maternal smoking, radiation exposure or maternal diabetes among the cohort. It was difficult to ascertain drug history in the study because selfmedication and over the counter (OTC) purchase of medications are very common. Many people in this environment practice self-medication as a first line response to ill health, and this would most likely include women in early pregnancy. Such women may self-indulge in over the counter drugs in response to undiagnosed illnesses, which often are difficult to differentiate from symptoms of early pregnancy. So, it is probable that this practice, although anecdotal in evidence, may be at the root of aetiogenesis of congenital clubfoot in our environment. There is significant evidence to associate random use of medications in pregnancy to the risk of isolated clubfoot in offspring.²⁷ Also, there is strong evidence for a genetic basis for isolated or idiopathic clubfoot. According to some authors, 38,51 approximately 25% of all isolated cases report a family history of clubfoot. However, there was no family history of clubfoot in the cohort reviewed by this study.

Syndromic clubfoot was the second most common variant in this study, at the rate of 17.9%. In the literature, syndromic clubfoot is said to account for the remaining 20% (after the estimated 80% from idiopathic clubfoot) of cases of congenital clubfoot,

due to associated malformations. chromosomal abnormalities and known genetic syndromes, such as distal arthrogryposis and myleomeningocele. 38,52 In this study, the commonest cause of syndromic clubfoot was arthrogryposis multiplex congenita (AMC), followed by tibia hemimelia. This study sought to make a subtle distinction between syndromic clubfoot in 12 (17.9%) of the sample population, and clubfoot associated with other musculoskeletal congenital malformations in another small sample population of 11 (16.4%) cases (Table 6). These other associated musculoskeletal malformations include overlapping or overriding toe digits, macrodactyly of the big toe, syndactyly, polydactyly and rudimentary digits. Macrodactyly of the big toe accounted for 6 (9.0%) of the associated anomalies. These other associated malformations do not provide the background of difficulty in the management of clubfoot as would be the case with defined syndromic clubfoot, occasioned by such intercurrent malformations as arthrogryposis multiplex congenita (AMC) or tibia hemimelia. So, the clubfoot associated with AMC is more difficult to manage than that associated with rudimentary digits.52 This study, therefore, sought to make a distinction between these two categories of musculoskeletal malformations associated with clubfoot in order to draw attention to their differing pathological anatomy.

This study considered the descriptive statistics of some characteristics of the parents of the children recruited into the sample population (Table 2). The result of the association between patients' age in months and the parents' demographic characteristics (Table 3) according to Pearson correlation coefficient (R) showed no statistically significant negative or inverse correlations with parents' age at conception and fathers' income. This statistical relationship suggests that the low level of fathers' income did not sufficiently explain the delayed or late presentation of the subjects to hospital for treatment. Notwithstanding, it remains a fact that ours is a poor and low-income environment, where the monthly average total family income, as projected from this study, was one hundred and thirty-one United States dollars (USD 131). It has already been established that clubfoot is commoner in low-income countries, and that 80% of cases are believed to be domiciled in developing countries, where clubfoot is adjudged a major disease burden in poor and low-resource settings. 5, 7, 13, 28, 53, 54

The pathological anatomy of clubfoot has been described in literature, detailing the fundamental parts of the deformity, based on clinical examination of the involved foot.^{1,13} The hind-foot is held in a firm position of equinus, with a tight Achilles tendon (tight heel cord), and this was documented in 64 (95.5%) of cases in the present study. The gastrosoleus muscles show varying degrees of retraction and atrophy, leading to spindle shaped legs, which was documented in 14 (20.9%) of cases in the study. The calcaneus is inverted in varus position, and the forefoot is held in adduction and supination, producing a cavus deformity on the medial surface of the foot as well as a medial and a posterior skin crease. Abnormal kinematics is apparent upon palpation of the deformed foot. There is limited subtalar motion because of severe shortening of the medial and posterior tarsal ligaments and the tightness of the tibialis posterior and gastrosoleus muscles. The head of the talus is unduly prominent and easily palpated, being uncovered by the navicular, which is medially positioned, close to the medial malleolus. 13,55 These different patho-anatomic changes of clubfoot were demonstrated in varying degrees among the sample population in this study (Table 5). The biological aberration in the clubfoot suggests an excessive pull of the tibialis posterior, aided by the gastrosoleus and the long toe flexors. The ligaments of the posteromedial aspects of the ankle and foot are very thick and taut. There is evidence that excessive collagen synthesis occurs in the ligaments, tendons and muscles around the foot and ankle, and this may persist until the child is three or four years, and is thought to be the reason for relapses in the affected children.1,56

CONCLUSION

Late presentation of clubfoot for treatment was common among the population of children with clubfoot seen in this study. Bilateral affectation was the commonest pattern of involvement. A low negative correlation of subjects' age at presentation was deduced in relation to parents' age at conception and fathers' income. The risk of clubfoot was higher among firstborn children and low overall family income was a risk factor. implication of these findings is for the relevant authorities to support health education initiatives to the communities where the patients and their parents reside. Since clubfoot is a disease of low-income environment, free treatment for children that are challenged is recommended, because it will encourage early presentation to the hospital.

ACKNOWLEDGEMENT

Acknowledgement goes to the staff of the clubfoot clinic of the hospital for their roles in organizing the subjects enrolled in the study.

The treatment sponsorship for congenital talipes equinovarus deformities in the study centre was provided by the Miracle Feet Foundation, United States of America, in conjunction with the Straight Child Foundation, Umuahia, Nigeria.

REFERENCES

- Maranho DA, Volpon JB. Congenital clubfoot. Acta Ortopedica Brasileira 2011; 19(3): 163 - 169.
- Manisha R, Priyanka K. Congenital clubfoot: A comprehensive review. Orthopaedics & Rheumatology Open Access 2017; 8(1): 555728. DOI:10.19080/OROAJ.2017.08.555728
- Ricco A, Richards B, Herring J. In: Herring, J. (Ed.) Tachdjian's Paediatric Orthopaedics 2014; 5th ed. Philadelpia. Elsevier, 785 818p.
- 4. Martanto TW, Dominica H, Irianto KA, Bayusentono S, Utomo DN. The Pirani score evaluation on patients with clubfoot treated with the Ponseti method in public hospital. Eurasian Journal of Biosciences 2020; 14:3419-3422.
- 5. Ansar A, Rahman AE, Romero L, Haider MR, Rahman MM, Moinuddin M, Siddique M AB, Mamun MA, Mazumder T, Pirani SP, Mathias RG, EI Arifeen S, Hoque DM. Systematic review and meta-analysis of global birth prevalence of clubfoot: a study protocol. British Medical Journal Open 2018; 8(3): e019246.
- 6. Asuquo JE, Abang IE, Anisi C, Urom S, Agweye P, Ngim NE, Okeke EN. Descriptive epidemiology and predisposing factors to idiopathic talipes equinovarus in south south Nigeria. Journal of Public Health and Epidemiology, 2016; 8(8): 147 151
- 7. Awang M, Sulaiman AR, Munajat I, Fazliq ME. Influence of age, weight, and pirani score on the number of castings in the early phase of clubfoot treatment using ponseti method. The Malaysian Journal of Medical Sciences 2014; 21(2):40 43.
- 8. Barker S, Chesney D, Miedzybrodzka Z, Maffulli N. Genetics and epidemiology of idiopathic congenital talipes equinovarus. Journal of Paediatric Orthopaedic, 2003; 23: 265 272.
- 9. Carter CO, Evans KA. Inheritance of congenital pyloric stenosis. Journal of Medical Genetics 1969; 6: 233 254.
- 10. Celebi L, Muratli HH, Aksahin E, Yagmurlu MF, Bicimoglu AB. International Clubfoot Study Group evaluation of treated clubfoot: Assessment of interobserver and intraobserver reliability. Journal of Pediatric Orthopaedics 2006; 15(1): 34 36.

- Cochran WG. Sampling techniques. Wiley 1963, New York.
- 12. Dietz F. The genetics of idiopathic clubfoot. Clinical Orthopaedics and Related Research, 2002; 401: 39 48.
- 13. Dimeglio A, Bensahel H, Souchet P, Mazeau P, Bonnet F. Classification of clubfoot. Journal of Paediatric Orthopedics 1995; 4(2): 129 136.
- 14. Dobbs MB, Gurnett CA. Genetics of clubfoot. Journal of Paediatric Orthopaedics 2012; 21: 7 9.
- 15. Dobbs MB, Gurnett CA. Update on clubfoot: etiology and treatment. Clinical Orthopaedics and Related Research 2009; 467:1146 1153.
- 16. DOI:10.19080/OROAJ.2017.08.555728
- 17. Gibbons PJ, Gray K. Update on clubfoot. Journal of Paediatrics and Child Health 2013; 49(9): E434 437. Doi: 10.1111/pjc.12167.
- 18. Hegazy MA, Khairy HM. Hegazy AA, El-Aidy SM. Clubfoot in children: An overview. The Foot and Ankle Online Journal 2021; 13 (4): 10. doi: 10.3827/faoj.2020.1304.0010.
- 19. Hollier LM, Leveno KJ, Kelly MA, McIntire DD, Cunningham FG. Maternal age and malformations in singleton births. Obstetrics and Gynecology 2000; 96(5): 701 706.
- Honein MA, Paulozzi LJ, Moore CA. Family history, maternal smoking, and clubfoot: an indication of a gene-environment interaction. American Journal of Epidemiology 2000; 152: 658 665.
- 21. https://www.investopedia.com/articles/forex/09031
- 22. Iltar S, Uysal M, Alemdaroglu KB, Aydogan NH, Talip Kara T, Dogan Atlihan D. Treatment of clubfoot with the Ponseti method: Should we begin casting in the newborn period or later? The Journal of Foot and Ankle Surgery 2010; 49: 426 431.
- 23. Investopedia. How to calculate exchange rate.
- 24. Janicki JA, Narayanan UG, Harvey B, Roy A, Ramseier LE, Wright JG. Treatment of neuromuscular and syndrome-associated (non-idiopathic) clubfeet using the Ponseti method. Journal of Paediatric Orthopaedics 2009; 29: 393 397.
- 25. Janicki JA, Narayanan UG, Harvey B, Roy A, Ramseier LE, Wright JG. Treatment of neuromuscular and syndrome-associated (non-idiopathic) clubfeet using the Ponseti method. Journal of Paediatric Orthopaedics 2009; 29: 393 397.
- 26. Kancherla V, Romitti PA, Caspers KM, Puzhankara S, Morcuende JA. Epidemiology of congenital idiopathic talipes equinovarus in Iowa, 1997-2005. American Journal of Medical Genetics 2010; 152A (7): 1695 1700.
- 27. Kruse L, Gurnett CA, Hootnick D, Dobbs MB. Magnetic resonance angiography in clubfoot and vertical talus: a feasibility study. Clinical Orthopaedics and Related Research 2009; 467(5): 1250 1255.
- 28. Lochmiller C, Johnston D, Scott A, Risman M, Hecht JT. Genetic epidemiology study of

- idiopathic talipes equinovarus. American Journal of Medical Genetics 1998; 79: 90 96.
- Manisha R, Priyanka K. Congenital clubfoot: A comprehensive review.
- 30. Maranho DA, Volpon JB. Congenital clubfoot. Acta Ortopedica Brasileira 2011; 19(3): 163 169.
- 31. Martanto TW, Dominica H, Irianto KA, Bayusentono S, Utomo DN. The Pirani score evaluation on patients with clubfoot treated with the Ponseti method in public hospital. Eurasian Journal of Biosciences 2020; 14: 3419 3422.
- 32. Matuszewski L, Gil L, Karski J. Early results of treatment for congenital clubfoot using the Ponseti method. European Journal of Orthopaedic Surgery and Traumatology: Orthopedie Traumatologie 2012; 22(5): 403 406.
- 33. Mejabi JO, Esan IO, Adegbehingbe OO, Orimolade EA, Asuquo J, Badmus HD, Anipole AO. The Pirani scoring system is effective in assessing severity and monitoring treatment of clubfeet in children. British Journal of Medicine and Medical Research 2016; 17(4):1 9.
- 34. Miedzybrodzka Z. Congenital talipes equinovarus (clubfoot): A disorder of the foot but not the hand. Journal of Anatomy 2003; 202(1): 37 42.
- 35. Mittal RL. Epidemiology of clubfoot. In: Clubfoot: A Comprehensive Approach (Past, Present, and Future). Boca Raton, FL: CRC Press/Taylor & Francis Group 2019; 5p.
- 36. Mkandawire NC, Kaunda E. Incidence and pattern of congenital talipes equinovarus (clubfoot) deformity at Queen Elizabeth Central hospital, Banter, Malawi. East and Central Africa Journal of Surgery 2004; 9(2): 28 31.
- 37. Morcuende AJ. Congenital idiopathic clubfoot: prevention of late deformity and disability by conservative treatment with the Ponseti technique. Paediatric Annals 2006; 35(2): 128 136.
- 38. O'Shea RM, Sabatini CS. What is new in idiopathic clubfoot? Current Reviews in Musculoskeletal Medicine 2016; 9(4): 470 477.
- 39. Omololu B, Ogunlade SO, Alonge TO. Pattern of congenital orthopaedic malformations in an African teaching hospital. West African Journal of Medicine 2005; 24(2): 92 95.
- 40. Orthopaedics & Rheumatology Open Access 2017; 8(1): 555728.
- 41. Palma M, Cook T, Segura J, Pecho A, Jose A, Morcuende JA. Descriptive epidemiology of clubfoot in Peru: a clinic-based study. The Iowa Orthopaedic Journal 2013; 33: 167 171
- 42. Parker SE, Mai CT, Strickland MJ, Canfield MA, Rickard R, Wang Y. National birth defects prevention network: Multistate study of the epidemiology of clubfoot. Birth Defects Research Part A, Clinical and Molecular Teratology, 2009; 85(11): 897 904.
- 43. Patel M. Clubfoot (Talipes).https://emedicine.medscape.com/article/1 237077-treatment#d1 2019; Accessed on 20/6/2021

- 44. Ponseti IV, Smoley EN Congenital Club Foot: The Results of Treatment. The Journal of Bone and Joint Surgery 1963; 45(2): 261-344.
- 45. Praveen KR. https://www.slideshare.net/mobile/PraveenKumarR eddyGorantla/ctev-82394819 2017; Accessed on 9/6/2021
- 46. Ricco A, Richards B, Herring J. In: Herring, J.
 (Ed.) Tachdjian's Paediatric Orthopaedics 2014;
 5th ed. Philadelpia. Elsevier, 785 818p.
- 47. Sadler B, Gurnett CA, Dobbs MB. The genetics of isolated and syndromic clubfoot. Journal of Children Orthopaedics, 2019; 13: 238 244. DOI: 10.1302/1863-2548.13.190063
- 48. Saltzman HM. Foot focus: International initiative to eradicate clubfeet using the Ponseti method. Foot & Ankle International 2009; 30(5): 468 471.
- 49. Siapkara A, Duncan R. Congenital talipes equinovarus: a review of current management.

 Journal of Bone and Joint Surgery, 2007; 89: 995 1000.
- 50. Smythe T H. Evidence to improve clubfoot services in Africa with Zimbabwe as a case study. PhD (research paper style) thesis 2018, London School of Hygiene and Tropical Medicine.
- 51. Smythe T, Kuper H, Macleod D, Foster A, Lavy C. Birth prevalence of congenital talipes equinovarus in low- and middle-income countries: a systematic review and meta-analysis. Tropical Medicine and International Health, 2017; 22(3): 269 285.
- Soares RJ, Cerqueira ASO, Mochizuki L, Serrao JC, Vilas-Boas JP, Amadio AC. Revista Brasileira de Educacao Fisica e Esporte/Brazilian Journal of Physical Education and Sports 2016; 30(2): 279 285.
- 53. Strach EH. Clubfoot through the Centuries. Progress in Pediatric Surgery, Springer-Verlag 1986; 20: 215 237.
- 54. Ugorji TN, Nwakamma JI, Anoliefo KT, Worgu FC. Epidemiology and pattern of clubfoot in Enugu, South-East Nigeria. American Journal of Biomedical Science and Research, 2020; 11(2): 190 193.
- 55. Ukoha U, Okafor A, Ogugua I, Udemezue P, Olisah O, Anyabolu, R. Incidence of congenital talipes equinovarus among children in SouthEast Nigeria. International Journal of Biological & Medical Research 2011; 2: 712 715.
- 56. Wallander HM. Congenital clubfoot. Acta Orthopaedica 2010; 81: 1 25.
- 57. Wang H, Barisic I, Loane M, Addor MC, Bailey LM, Gatt M, Kari Klungsoyr K, Mokoroa O, Nelen V, Neville AJ, O'Mahony M, Pierini A, Rissmann A, Verellen-Dumoulin C, de Walle HEK, Wiesel A, Wisniewska K, de Jong-van den Berg LTW, Dolk H, Khoshnood B, Garne E. Congenital clubfoot in Europe: a population-based study. American Journal of Medicine Genetics, 2019; 179 (4): 595 601.
- 58. Werler MM, Yazdy MM, Kasser JR, Kasser JR, Mahan ST, Meyer RE, Mitchell AA. Maternal cigarette, alcohol, and coffee consumption in

Dim et al.

relation to risk of clubfoot. Paediatric and Perinatal Epidemiology 2015; 29(1): 3-10. Werler MM, Yazdy MM, Mitchell AA et al.

59. Werler MM, Yazdy MM, Mitchell AA et al. Descriptive epidemiology of idiopathic clubfoot.

American Journal of Medical Genetics, 2013; 161A: 1569 – 1578.